The generator matrix 1 0 1 1 1 X^2+X 1 1 0 1 1 X^2+X 1 1 0 1 1 X^2+X 1 1 X^2 1 1 X^2+X 1 1 X 1 1 0 0 1 X^2+X 0 X^2 X^2+X X^2 X^2+X 1 1 1 1 1 X 1 X^2+X 1 0 1 X+1 X^2+X 1 1 0 X+1 1 X^2+1 X^2+X 1 0 X+1 1 X^2+X X^2+1 1 X^2 X^2+X+1 1 X^2+X X^2+1 1 X X^2+1 1 X+1 0 1 X X^2+X 1 1 1 1 1 1 0 X+1 0 X X^2+1 1 X^2 1 0 0 0 X^2 0 0 0 0 0 X^2 X^2 0 X^2 X^2 X^2 0 X^2 X^2 0 X^2 0 X^2 X^2 0 X^2 0 X^2 X^2 0 0 0 X^2 X^2 0 0 X^2 0 0 X^2 0 X^2 X^2 0 0 X^2 0 X^2 0 0 0 0 X^2 0 0 X^2 0 X^2 X^2 X^2 0 X^2 X^2 0 0 0 X^2 0 X^2 X^2 X^2 0 0 0 0 X^2 X^2 0 X^2 X^2 0 X^2 X^2 X^2 0 X^2 X^2 0 0 0 0 0 0 0 X^2 0 0 0 0 0 X^2 0 X^2 X^2 0 0 X^2 0 0 X^2 X^2 0 X^2 X^2 X^2 0 X^2 X^2 0 X^2 X^2 0 0 X^2 0 0 0 X^2 X^2 X^2 X^2 X^2 0 X^2 X^2 X^2 0 X^2 0 0 X^2 X^2 0 0 0 0 0 0 X^2 0 X^2 X^2 0 X^2 X^2 0 X^2 0 X^2 0 X^2 0 0 X^2 X^2 X^2 0 0 X^2 0 X^2 X^2 0 0 X^2 0 X^2 0 0 X^2 X^2 0 0 X^2 X^2 0 0 X^2 0 0 generates a code of length 47 over Z2[X]/(X^3) who´s minimum homogenous weight is 42. Homogenous weight enumerator: w(x)=1x^0+76x^42+32x^43+179x^44+64x^45+142x^46+64x^47+157x^48+64x^49+108x^50+32x^51+75x^52+24x^54+2x^56+1x^60+2x^62+1x^68 The gray image is a linear code over GF(2) with n=188, k=10 and d=84. This code was found by Heurico 1.16 in 0.073 seconds.